Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eng Life Sci ; 20(8): 350-356, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32774207

RESUMO

The application of integrated microbioreactor systems is rapidly becoming of more interest to accelerate strain characterization and bioprocess development. However, available high-throughput screening capabilities are often limited to target extracellular compounds only. Consequently, there is a great demand for automated technologies allowing for miniaturized and parallel cell disruption providing access to intracellular measurements. In this study, a fully automated bead mill workflow was developed and validated for four different industrial platform organisms: Escherichia coli, Corynebacterium glutamicum, Saccharomyces cerevisiae, and Aspergillus niger. The workflow enables up to 48 parallel cell disruptions in microtiter plates and is applicable at-line to running lab-scale cultivations. The resulting cell extracts form the basis for quantitative omics studies where no rapid metabolic quenching is required (e.g., genomics and proteomics).

2.
Artigo em Inglês | MEDLINE | ID: mdl-31396392

RESUMO

BACKGROUND: Filamentously growing microorganisms offer unique advantages for biotechnological processes, such as extraordinary secretion capacities, going along with multiple obstacles due to their complex morphology. However, limited experimental throughput in bioprocess development still hampers taking advantage of their full potential. Miniaturization and automation are powerful tools to accelerate bioprocess development, but so far the application of such technologies has mainly been focused on non-filamentous systems. During cultivation, filamentous fungi can undergo remarkable morphological changes, creating challenging cultivation conditions. Depending on the process and product, only one specific state of morphology may be advantageous to achieve e.g. optimal productivity or yield. Different approaches to control morphology have been investigated, such as microparticle enhanced cultivation. However, the addition of solid microparticles impedes the optical measurements typically used by microbioreactor systems and thus alternatives are needed. RESULTS: Aspergillus giganteus IfGB 0902 was used as a model system to develop a time-efficient and robust workflow allowing microscale cultivation with increased throughput. The effect of microtiter plate geometry, shaking frequency and medium additives (talc and calcium chloride) on homogeneity of culture morphology as well as reproducibility were analyzed via online biomass measurement, microscopic imaging and cell dry weight. While addition of talc severely affected online measurements, 2% (w v-1) calcium chloride was successfully applied to obtain a highly reproducible growth behavior with homogenous morphology. Furthermore, the influence of small amounts of complex components was investigated for the applied model strain. By correlation to cell dry weight, it could be shown that optical measurements are a suitable signal for biomass concentration. However, each correlation is only applicable for a specific set of cultivation parameters. These optimized conditions were used in micro as well as lab-scale bioreactor cultivation in order to verify the reproducibility and scalability of the setup. CONCLUSION: A robust workflow for A. giganteus was developed, allowing for reproducible microscale cultivation with online monitoring, where calcium chloride is an useful alternative to microparticle enhanced cultivation in order to control the morphology. Independent of the cultivation volume, comparable phenotypes were observed in microtiter plates and in lab-scale bioreactor.

3.
Microb Cell Fact ; 18(1): 143, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434564

RESUMO

BACKGROUND: In most microbial cultivations D-glucose is the main carbon and energy source. However, quantification of D-glucose especially in small scale is still challenging. Therefore, we developed a FRET-based glucose biosensor, which can be applied in microbioreactor-based cultivations. This sensor consists of a glucose binding protein sandwiched between two fluorescent proteins, constituting a FRET pair. Upon D-glucose binding the sensor undergoes a conformational change which is translated into a FRET-ratio change. RESULTS: The selected sensor shows an apparent Kd below 1.5 mM D-glucose and a very high sensitivity of up to 70% FRET-ratio change between the unbound and the glucose-saturated state. The soluble sensor was successfully applied online to monitor the glucose concentration in an Escherichia coli culture. Additionally, this sensor was utilized in an at-line process for a Corynebacterium glutamicum culture as an example for a process with cell-specific background (e.g. autofluorescence) and medium-induced quenching. Immobilization of the sensor via HaloTag® enabled purification and covalent immobilization in one step and increased the stability during application, significantly. CONCLUSION: A FRET-based glucose sensor was used to quantify D-glucose consumption in microtiter plate based cultivations. To the best of our knowledge, this is the first method reported for online quantification of D-glucose in microtiter plate based cultivations. In comparison to D-glucose analysis via an enzymatic assay and HPLC, the sensor performed equally well, but enabled much faster measurements, which allowed to speed up microbial strain development significantly.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Glucose/análise , Técnicas de Cultura de Células/métodos , Corynebacterium glutamicum/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...